An Overview of Viscosity Solutions of Path-Dependent PDEs.

Authors
Publication date
2014
Publication type
Book Chapter
Summary This paper provides an overview of the recently developed notion of viscosity solutions of path-dependent partial di erential equations. We start by a quick review of the Crandall- Ishii notion of viscosity solutions, so as to motivate the relevance of our de nition in the path-dependent case. We focus on the wellposedness theory of such equations. In partic- ular, we provide a simple presentation of the current existence and uniqueness arguments in the semilinear case. We also review the stability property of this notion of solutions, in- cluding the adaptation of the Barles-Souganidis monotonic scheme approximation method. Our results rely crucially on the theory of optimal stopping under nonlinear expectation. In the dominated case, we provide a self-contained presentation of all required results. The fully nonlinear case is more involved and is addressed in [12].
Publisher
Springer International Publishing
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr