Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry.

Authors Publication date
2015
Publication type
Book Chapter
Summary In this short note, using our geometric method introduced in a previous paper \cite{phl} and initiated by \cite{ave}, we derive an asymptotic swaption implied volatility at the first-order for a general stochastic volatility Libor Market Model. This formula is useful to quickly calibrate a model to a full swaption matrix. We apply this formula to a specific model where the forward rates are assumed to follow a multi-dimensional CEV process correlated to a SABR process. For a caplet, this model degenerates to the classical SABR model and our asymptotic swaption implied volatility reduces naturally to the Hagan-al formula \cite{sab}. The geometry underlying this model is the hyperbolic manifold $\HH^{n+1}$ with $n$ the number of Libor forward rates.
Publisher
Springer International Publishing
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr