Dynamic Risk Measures and Path-Dependent Second Order PDEs.

Authors Publication date
2015
Publication type
Book Chapter
Summary We propose new notions of regular solutions and viscosity solutions for path-dependent second order partial differential equations. Making use of the martingale problem approach to path-dependent diffusion processes, we explicitly construct families of time-consistent dynamic risk measures on the set of cadlag paths \(I\!R^n\) valued endowed with the Skorokhod topology. These risk measures are shown to have regularity properties. We prove then that these time-consistent dynamic risk measures provide viscosity supersolutions and viscosity subsolutions for path-dependent semi-linear second order partial differential equations.
Publisher
Springer International Publishing
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr