When terminal facelift enforces delta constraints.

Authors Publication date
2015
Publication type
Journal Article
Summary This paper deals with the superreplication of non-path-dependent European claims under additional convex constraints on the number of shares held in the portfolio. The corresponding superreplication price of a given claim has been widely studied in the literature, and its terminal value, which dominates the claim of interest, is the so-called facelift transform of the claim. We investigate under which conditions the superreplication price and strategy of a large class of claims coincide with the exact replication price and strategy of the facelift transform of this claim. In one dimension, we observe that this property is satisfied for any local volatility model. In any dimension, we exhibit an analytical necessary and sufficient condition for this property, which combines the dynamics of the stock together with the characteristics of the closed convex set of constraints. To obtain this condition, we introduce the notion of first order viability property for linear parabolic PDEs. We investigate in detail several practical cases of interest: multidimensional Black–Scholes model, non-tradable assets, and short-selling restrictions.
Publisher
Springer Science and Business Media LLC
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr