A switching self-exciting jump diffusion process for stock prices.

Authors
Publication date
2018
Publication type
Journal Article
Summary This study proposes a new Markov switching process with clustering eects. In this approach, a hidden Markov chain with a nite number of states modulates the parameters of a self-excited jump process combined to a geometric Brownian motion. Each regime corresponds to a particular economic cycle determining the expected return, the diusion coecient and the long-run frequency of clustered jumps. We study rst the theoretical properties of this process and we propose a sequential Monte-Carlo method to lter the hidden state variables. We next develop a Markov Chain Monte-Carlo procedure to t the model to the S&P 500. Finally, we analyse the impact of such a jump clustering on implied volatilities of European options.
Publisher
Springer Science and Business Media LLC
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr