Self-healing umbrella sampling: convergence and efficiency.

Authors
Publication date
2015
Publication type
Journal Article
Summary The Self-Healing Umbrella Sampling (SHUS) algorithm is an adaptive biasing algorithm which has been proposed to efficiently sample a multimodal probability measure. We show that this method can be seen as a variant of the well-known Wang-Landau algorithm. Adapting results on the convergence of the Wang-Landau algorithm, we prove the convergence of the SHUS algorithm. We also compare the two methods in terms of efficiency. We finally propose a modification of the SHUS algorithm in order to increase its efficiency, and exhibit some similarities of SHUS with the well-tempered metadynamics method.
Publisher
Springer Science and Business Media LLC
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr