Risk minimization in financial markets modeled by Itô-Lévy processes.

Authors
Publication date
2014
Publication type
Journal Article
Summary This paper is mainly a survey of recent research developments regarding methods for risk minimization in financial markets modeled by Itô-Lévy processes, but it also contains some new results on the underlying stochastic maximum principle. The concept of a convex risk measure is introduced, and two representations of such measures are given, namely: (i) the dual representation and (ii) the representation by means of backward stochastic differential equations (BSDEs) with jumps. Depending on the representation, the corresponding risk minimal portfolio problem is studied, either in the context of stochastic differential games or optimal control of forward-backward SDEs. The related concept of recursive utility is also introduced, and corresponding recursive utility maximization problems are studied. In either case the maximum principle for optimal stochastic control plays a crucial role, and in the paper we prove a version of this principle which is stronger than what was previously known. The theory is illustrated by examples, showing explicitly the risk minimizing portfolio in some cases. Afrika Matematika May 2014, Available online on 18 May 2014 The final publication is available at Springe.
Publisher
Springer Science and Business Media LLC
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr