Computation of sensitivities for the invariant measure of a parameter dependent diffusion.

Authors
Publication date
2017
Publication type
Journal Article
Summary We consider the solution to a stochastic differential equation with a drift function which depends smoothly on some real parameter λ, and admitting a unique invariant measure for any value of λ around λ = 0. Our aim is to compute the derivative with respect to λ of averages with respect to the invariant measure, at λ = 0. We analyze a numerical method which consists in simulating the process at λ = 0 together with its derivative with respect to λ on long time horizon. We give sufficient conditions implying uniform-in-time square integrability of this derivative. This allows in particular to compute efficiently the derivative with respect to λ of the mean of an observable through Monte Carlo simulations.
Publisher
Springer Science and Business Media LLC
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr