A polynomial expansion to approximate the ultimate ruin probability in the compound Poisson ruin model.

Authors Publication date
2016
Publication type
Journal Article
Summary A numerical method to approximate ruin probabilities is proposed within the frame of a compound Poisson ruin model. The defective density function associated to the ruin probability is projected in an orthogonal polynomial system. These polynomials are orthogonal with respect to a probability measure that belongs to Natural Exponential Family with Quadratic Variance Function (NEF-QVF). The method is convenient in at least four ways. Firstly, it leads to a simple analytical expression of the ultimate ruin probability. Secondly, the implementation does not require strong computer skills. Thirdly, our approximation method does not necessitate any preliminary discretisation step of the claim sizes distribution. Finally, the coefficients of our formula do not depend on initial reserves.
Publisher
Elsevier BV
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr