Kusuoka–Stroock gradient bounds for the solution of the filtering equation.

Authors
Publication date
2015
Publication type
Journal Article
Summary © 2014 Elsevier Inc.We obtain sharp gradient bounds for perturbed diffusion semigroups. In contrast with existing results, the perturbation is here random and the bounds obtained are pathwise. Our approach builds on the classical work of Kusuoka and Stroock [13,14,16,17], and extends their program developed for the heat semi-group to solutions of stochastic partial differential equations. The work is motivated by and applied to nonlinear filtering. The analysis allows us to derive pathwise gradient bounds for the un-normalised conditional distribution of a partially observed signal. It uses a pathwise representation of the perturbed semigroup following Ocone [22]. The estimates we derive have sharp small time asymptotics.
Publisher
Elsevier BV
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr