Nonparametric Imputation by Data Depth.

Authors
Publication date
2019
Publication type
Journal Article
Summary The presented methodology for single imputation of missing values borrows the idea from data depth --- a measure of centrality defined for an arbitrary point of the space with respect to a probability distribution or a data cloud. This consists in iterative maximization of the depth of each observation with missing values, and can be employed with any properly defined statistical depth function. On each single iteration, imputation is narrowed down to optimization of quadratic, linear, or quasiconcave function being solved analytically, by linear programming, or the Nelder-Mead method, respectively. Being able to grasp the underlying data topology, the procedure is distribution free, allows to impute close to the data, preserves prediction possibilities different to local imputation methods (k-nearest neighbors, random forest), and has attractive robustness and asymptotic properties under elliptical symmetry. It is shown that its particular case --- when using Mahalanobis depth --- has direct connection to well known treatments for multivariate normal model, such as iterated regression or regularized PCA. The methodology is extended to the multiple imputation for data stemming from an elliptically symmetric distribution. Simulation and real data studies positively contrast the procedure with existing popular alternatives. The method has been implemented as an R-package.
Publisher
Informa UK Limited
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr