Stochastic local intensity loss models with interacting particle systems.

Authors Publication date
2013
Publication type
Journal Article
Summary It is well-known from the work of Schönbucher (2005) that the marginal laws of a loss process can be matched by a unit increasing time inhomogeneous Markov process, whose deterministic jump intensity is called local intensity. The Stochastic Local Intensity (SLI) models such as the one proposed by Arnsdorf and Halperin (2008) allow to get a stochastic jump intensity while keeping the same marginal laws. These models involve a non-linear SDE with jumps. The first contribution of this paper is to prove the existence and uniqueness of such processes. This is made by means of an interacting particle system, whose convergence rate towards the non-linear SDE is analyzed. Second, this approach provides a powerful way to compute pathwise expectations with the SLI model: we show that the computational cost is roughly the same as a crude Monte-Carlo algorithm for standard SDEs.
Publisher
Wiley
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr