Xva principles, nested monte carlo strategies, and gpu optimizations.

Authors
Publication date
2018
Publication type
Journal Article
Summary We present a nested Monte Carlo (NMC) approach implemented on graphics processing units (GPU) to X-valuation adjustments (XVA), where X ranges over C for credit, F for funding, M for margin, and K for capital. The overall XVA suite involves five compound layers of dependence. Higher layers are launched first and trigger nested simulations on-the-fly whenever required in order to compute an item from a lower layer. If the user is only interested in some of the XVA components, then only the sub-tree corresponding to the most outer XVA needs be processed computationally. Inner layers only need a square root number of simulation with respect to the most outer layer. Some of the layers exhibit a smaller variance. As a result, with GPUs at least, error controlled NMC XVA computations are doable. But, although NMC is naively suited to parallelization, a GPU implementation of NMC XVA computations requires various optimizations. This is illustrated on XVA computations involving equities, interest rate, and credit derivatives, for both bilateral and central clearing XVA metrics.
Publisher
World Scientific Pub Co Pte Lt
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr