Spectrum of large random Markov chains: Heavy-tailed weights on the oriented complete graph.

Authors
Publication date
2017
Publication type
Journal Article
Summary We consider the random Markov matrix obtained by assigning i.i.d. non-negative weights to each edge of the complete oriented graph. In this study, the weights have unbounded first moment and belong to the domain of attraction of an alpha-stable law. We prove that as the dimension tends to infinity, the empirical measure of the singular values tends to a probability measure which depends only on alpha, characterized as the expected value of the spectral measure at the root of a weighted random tree. The latter is a generalized two-stage version of the Poisson weighted infinite tree (PWIT) introduced by David Aldous. Under an additional smoothness assumption, we show that the empirical measure of the eigenvalues tends to a non-degenerate isotropic probability measure depending only on alpha and supported on the unit disc of the complex plane. We conjecture that the limiting support is actually formed by a strictly smaller disc.
Publisher
World Scientific Pub Co Pte Lt
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr