Invariant measure of duplicated diffusions and application to Richardson–Romberg extrapolation.

Authors
Publication date
2015
Publication type
Journal Article
Summary With a view to numerical applications we address the following question: given an ergodic Brownian diffusion with a unique invariant distribution, what are the invariant distributions of the duplicated system consisting of two trajectories? We mainly focus on the interesting case where the two trajectories are driven by the same Brownian path. Under this assumption, we first show that uniqueness of the invariant distribution (weak confluence) of the duplicated system is essentially always true in the one-dimensional case. In the multidimensional case, we begin by exhibiting explicit counter-examples. Then, we provide a series of weak confluence criterions (of integral type) and also of a.s. pathwise confluence, depending on the drift and diffusion coefficients through a non-infinitesimal Lyapunov exponent. As examples, we apply our criterions to some non-trivially confluent settings such as classes of gradient systems with non-convex potentials or diffusions where the confluence is generated by the diffusive component. We finally establish that the weak confluence property is connected with an optimal transport problem. As a main application, we apply our results to the optimization of the Richardson-Romberg extrapolation for the numerical approximation of the invariant measure of the initial ergodic Brownian diffusion.
Publisher
Institute of Mathematical Statistics
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr