A Non Linear Scoring Approach for Evaluating Balance: Classification of Elderly as Fallers and Non-Fallers.

Authors
  • AUDIFFREN Julien
  • BARGIOTAS Ioannis
  • VAYATIS Nicolas
  • VIDAL Pierre paul
  • RICARD Damien
Publication date
2016
Publication type
Journal Article
Summary Almost one third of population 65 years-old and older faces at least one fall per year. An accurate evaluation of the risk of fall through simple and easy-to-use measurements is an important issue in current clinic. A common way to evaluate balance in posturography is through the recording of the centre-of-pressure (CoP) displacement (statokinesigram) with force platforms. A variety of indices have been proposed to differentiate fallers from non fallers. However, no agreement has been reached whether these analyses alone can explain sufficiently the complex synergies of postural control. In this work, we study the statokinesigrams of 84 elderly subjects (80.3+- 6.4 years old), which had no impairment related to balance control. Each subject was recorded 25 seconds with eyes open and 25 seconds with eyes closed and information pertaining to the presence of problems of balance, such as fall, in the last six months, was collected. Five descriptors of the statokinesigrams were computed for each record, and a Ranking Forest algorithm was used to combine those features in order to evaluate each subject's balance with a score. A classical train-test split approach was used to evaluate the performance of the method through ROC analysis. ROC analysis showed that the performance of each descriptor separately was close to a random classifier (AUC between 0.49 and 0.54). On the other hand, the score obtained by our method reached an AUC of 0.75 on the test set, consistent over multiple train-test split. This non linear multi-dimensional approach seems appropriate in evaluating complex postural control.
Publisher
Public Library of Science (PLoS)
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr