On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds.

Authors
Publication date
2014
Publication type
Journal Article
Summary Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: \[ \partial_x \left[(|u_{x}|-\delta_1)_+^{q-1}\, \frac{u_{x}}{|u_{x}|}\right]+\partial_y \left[(|u_{y}|-\delta_2)_+^{q-1}\, \frac{u_{y}}{|u_{y}|}\right]=f, \] for $2\le q<\infty$ and some non negative parameters $\delta_1,\delta_2$. Here $(\,\cdot\,)_+$ stands for the positive part. We prove that if $f\in L^\infty_{loc}$, then $\nabla u\in L^r_{loc}$ for every $r\ge 1$.
Publisher
Walter de Gruyter GmbH
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr