Functional quantization-based stratified sampling methods.

Authors
Publication date
2015
Publication type
Journal Article
Summary In this article, we propose several quantization-based stratified sampling methods to reduce the variance of a Monte Carlo simulation. Theoretical aspects of stratification lead to a strong link between optimal quadratic quantization and the variance reduction that can be achieved with stratified sampling. We first put the emphasis on the consistency of quantization for partitioning the state space in stratified sampling methods in both finite and infinite dimensional cases. We show that the proposed quantization-based strata design has uniform efficiency among the class of Lipschitz continuous functionals. Then a stratified sampling algorithm based on product functional quantization is proposed for path-dependent functionals of multi-factor diffusions. The method is also available for other Gaussian processes such as Brownian bridge or Ornstein-Uhlenbeck processes. We derive in detail the case of Ornstein-Uhlenbeck processes. We also study the balance between the algorithmic complexity of the simulation and the variance reduction factor.
Publisher
Walter de Gruyter GmbH
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr