An Explicit Martingale Version of Brenier's Theorem.

Authors Publication date
2013
Publication type
Journal Article
Summary By investigating model-independent bounds for exotic options in financial mathematics, a martingale version of the Monge-Kantorovich mass transport problem was introduced in \cite{BeiglbockHenry LaborderePenkner,GalichonHenry-LabordereTouzi}. In this paper, we extend the one-dimensional Brenier's theorem to the present martingale version. We provide the explicit martingale optimal transference plans for a remarkable class of coupling functions corresponding to the lower and upper bounds. These explicit extremal probability measures coincide with the unique left and right monotone martingale transference plans, which were introduced in \cite{BeiglbockJuillet} by suitable adaptation of the notion of cyclic monotonicity. Instead, our approach relies heavily on the (weak) duality result stated in \cite{BeiglbockHenry-LaborderePenkner}, and provides, as a by-product, an explicit expression for the corresponding optimal semi-static hedging strategies. We finally provide an extension to the multiple marginals case.
Publisher
Elsevier BV
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr