Transport-entropy inequalities and deviation estimates for stochastic approximation schemes.

Authors
Publication date
2013
Publication type
Journal Article
Summary We obtain new transport-entropy inequalities and, as a by-product, new deviation estimates for the laws of two kinds of discrete stochastic approximation schemes. The first one refers to the law of an Euler like discretization scheme of a diffusion process at a fixed deterministic date and the second one concerns the law of a stochastic approximation algorithm at a given time-step. Our results notably improve and complete those obtained in [Frikha, Menozzi,2012]. The key point is to properly quantify the contribution of the diffusion term to the concentration regime. We also derive a general non-asymptotic deviation bound for the difference between a function of the trajectory of a continuous Euler scheme associated to a diffusion process and its mean. Finally, we obtain non-asymptotic bound for stochastic approximation with averaging of trajectories, in particular we prove that averaging a stochastic approximation algorithm with a slow decreasing step sequence gives rise to optimal concentration rate.
Publisher
Institute of Mathematical Statistics (IMS)
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr