A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers.

Authors
Publication date
2013
Publication type
Proceedings Article
Summary We provide a first PAC-Bayesian analysis for domain adaptation (DA) which arises when the learning and test distributions differ. It relies on a novel distribution pseudodistance based on a disagreement averaging. Using this measure, we derive a PAC-Bayesian DA bound for the stochastic Gibbs classifier. This bound has the advantage of being directly optimizable for any hypothesis space. We specialize it to linear classifiers, and design a learning algorithm which shows interesting results on a synthetic problem and on a popular sentiment annotation task. This opens the door to tackling DA tasks by making use of all the PAC-Bayesian tools.
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr