Non-parametric Stochastic Approximation with Large Step sizes.

Authors Publication date
2015
Publication type
report
Summary We consider the random-design least-squares regression problem within the reproducing kernel Hilbert space (RKHS) framework. Given a stream of independent and identically distributed input/output data, we aim to learn a regression function within an RKHS $\mathcal{H}$, even if the optimal predictor (i.e., the conditional expectation) is not in $\mathcal{H}$. In a stochastic approximation framework where the estimator is updated after each observation, we show that the averaged unregularized least-mean-square algorithm (a form of stochastic gradient), given a sufficient large step-size, attains optimal rates of convergence for a variety of regimes for the smoothnesses of the optimal prediction function and the functions in $\mathcal{H}$.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr