Adaptive estimation for bifurcating markov chains.

Authors
Publication date
2016
Publication type
Journal Article
Summary In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov chains (BMC) under a geometric ergodicity assumption, completing former results of Guyon and Bitseki Penda, Djellout and Guillin. These preliminary results are the key ingredient to implement nonparametric wavelet thresholding estimation procedures: in a second part, we construct nonparametric estimators of the transition density of a BMC, of its mean transition density and of the corresponding invariant density, and show smoothness adaptation over various multivariate Besov classes under L p-loss error, for 1 ≤ p < ∞. We prove that our estimators are (nearly) optimal in a minimax sense. As an application, we obtain new results for the estimation of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical study of bifurcating autoregressive processes.
Publisher
Bernoulli Society for Mathematical Statistics and Probability
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr