On logarithmic Sobolev inequalities for the heat kernel on the Heisenberg group.

Authors
Publication date
2016
Publication type
Other
Summary In this note, we derive a new logarithmic Sobolev inequality for the heat kernel on the Heisenberg group. The proof is inspired from the historical method of Leonard Gross with the Central Limit Theorem for a random walk. Here the non commutative nature of the increments produces a new gradient which naturally involves a Brownian bridge on the Heisenberg group. This new inequality contains the optimal logarithmic Sobolev inequality for the Gaussian distribution in two dimensions. We compare this new inequality with the sub-elliptic logarithmic Sobolev inequality of Hong-Quan Li and with the more recent inequality of Fabrice Baudoin and Nicola Garofalo obtained using a generalized curvature criterion. Finally, we extend this inequality to the case of homogeneous Carnot groups of rank two.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr