Invariance times *.

Authors
Publication date
2017
Publication type
Other
Summary On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale. Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr