European options in a non-linear incomplete market model with default.

Authors
Publication date
2019
Publication type
Other
Summary This paper studies the superhedging prices and the associated superhedging strategies for European options in a non-linear incomplete market model with default. We present the seller's and the buyer's point of view. The underlying market model consists of a risk-free asset and a risky asset driven by a Brownian motion and a compensated default martingale. The portfolio processes follow non-linear dynamics with a non-linear driver f. By using a dynamic programming approach, we first provide a dual formulation of the seller's (superhedging) price for the European option as the supremum, over a suitable set of equivalent probability measures Q ∈ Q, of the f-evaluation/expectation under Q of the payoff. We also provide a characterization of the seller's (superhedging) price process as the minimal supersolution of a constrained BSDE with default and a characterization in terms of the minimal weak supersolution of a BSDE with default. By a form of symmetry, we derive corresponding results for the buyer. Our results rely on first establishing a non-linear optional and a non-linear predictable decomposition for processes which are $\mathcal{E}^f$-strong supermartingales under Q, for all Q ∈ Q.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr