Adaptive greedy algorithm for moderately large dimensions in kernel conditional density estimation.

Authors
Publication date
2019
Publication type
report
Summary This paper studies the estimation of the conditional density f (x, ·) of Y i given X i = x, from the observation of an i.i.d. sample (X i , Y i) ∈ R d , i = 1,. . , n. We assume that f depends only on r unknown components with typically r d. We provide an adaptive fully-nonparametric strategy based on kernel rules to estimate f. To select the bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f. More precisely, in the minimax setting, our pointwise estimator, which is adaptive to both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its computational complexity is only O(dn log n).
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr