From (Martingale) Schrodinger bridges to a new class of Stochastic Volatility Models.

Authors Publication date
2019
Publication type
Other
Summary Following closely the construction of the Schrodinger bridge, we build a new class of Stochastic Volatility Models exactly calibrated to market instruments such as for example Vanillas, options on realized variance or VIX options. These models differ strongly from the well-known local stochastic volatility models, in particular the instantaneous volatility-of-volatility of the associated naked SVMs is not modified, once calibrated to market instruments. They can be interpreted as a martingale version of the Schrodinger bridge. The numerical calibration is performed using a dynamic-like version of the Sinkhorn algorithm. We finally highlight a striking relation with Dyson non-colliding Brownian motions.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr