Probability measure characterization by L^p-quantization error function.

Authors
Publication date
2019
Publication type
Journal Article
Summary We establish conditions to characterize probability measures by their L^p-quantization error functions in both R^d and Hilbert settings. This characterization is two-fold: static (identity of two distributions) and dynamic (convergence for the L^p-Wasserstein distance). We first propose a criterion on the quantization level N, valid for any norm on Rd and any order p based on a geometrical approach involving the Voronoi diagram. Then, we prove that in the L^2-case on a (separable) Hilbert space, the condition on the level N can be reduced to N = 2, which is optimal. More quantization based characterization cases in dimension 1 and a discussion of the completeness of a distance defined by the quantization error function can be found at the end of this paper.
Publisher
Bernoulli Society for Mathematical Statistics and Probability
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr