Well-posedness and approximation of some one-dimensional lévy-driven non-linear sdes.

Authors
Publication date
2020
Publication type
Other
Summary In this article, we are interested in the strong well-posedness together with the numerical approximation of some one-dimensional stochastic differential equations with a non-linear drift, in the sense of McKean-Vlasov, driven by a spectrally-positive Lévy process and a Brownian motion. We provide criteria for the existence of strong solutions under non-Lipschitz conditions of Yamada-Watanabe type without non-degeneracy assumption. The strong convergence rate of the propagation of chaos for the associated particle system and of the corresponding Euler-Maruyama scheme are also investigated. In particular, the strong convergence rate of the Euler-Maruyama scheme exhibits an interplay between the regularity of the coefficients and the order of singularity of the Lévy measure around zero.
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr