Efficient improper learning for online logistic regression.

Authors Publication date
2020
Publication type
Other
Summary We consider the setting of online logistic regression and consider the regret with respect to the 2-ball of radius B. It is known (see [Hazan et al., 2014]) that any proper algorithm which has logarithmic regret in the number of samples (denoted n) necessarily suffers an exponential multiplicative constant in B. In this work, we design an efficient improper algorithm that avoids this exponential constant while preserving a logarithmic regret. Indeed, [Foster et al., 2018] showed that the lower bound does not apply to improper algorithms and proposed a strategy based on exponential weights with prohibitive computational complexity. Our new algorithm based on regularized empirical risk minimization with surrogate losses satisfies a regret scaling as O(B log(Bn)) with a per-round time-complexity of order O(d^2).
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr