Doubly robust treatment effect estimation with missing attributes.

Authors
  • MAYER Imke
  • SVERDRUP Erik
  • GAUSS Tobias
  • MOYER Jean denis
  • WAGER Stefan
  • JOSSE Julie
Publication date
2020
Publication type
Other
Summary Missing attributes are ubiquitous in causal inference, as they are in most applied statistical work. In this paper, we consider various sets of assumptions under which causal inference is possible despite missing attributes and discuss corresponding approaches to average treatment effect estimation, including generalized propensity score methods and multiple imputation. Across an extensive simulation study, we show that no single method systematically out-performs others. We find, however, that doubly robust modifications of standard methods for average treatment effect estimation with missing data repeatedly perform better than their non-doubly robust baselines. for example, doubly robust generalized propensity score methods beat inverse-weighting with the generalized propensity score. This finding is reinforced in an analysis of an observations study on the effect on mortality of tranexamic acid administration among patients with traumatic brain injury in the context of critical care management. Here, doubly robust estimators recover confidence intervals that are consistent with evidence from randomized trials, whereas non-doubly robust estimators do not.
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr