Optimal dual quantizers of 1D log-concave distributions: uniqueness and Lloyd like algorithm.
Summary
We establish for dual quantization the counterpart of Kieffer's uniqueness result for compactly supported one dimensional probability distributions having a $\log$-concave density (also called strongly unimodal): for such distributions, $L^r$-optimal dual quantizers are unique at each level $N$, the optimal grid being the unique critical point of the quantization error. An example of non-strongly unimodal distribution for which uniqueness of critical points fails is exhibited. In the quadratic $r=2$ case, we propose an algorithm to compute the unique optimal dual quantizer. It provides a counterpart of Lloyd's method~I algorithm in a Voronoi framework. Finally semi-closed forms of $L^r$-optimal dual quantizers are established for power distributions on compacts intervals and truncated exponential distributions.
Topics of the publication
-
No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr