Accelerated Share Repurchase and other buyback programs: what neural networks can bring.

Authors
Publication date
2020
Publication type
Other
Summary When firms want to buy back their own shares, they have a choice between several alternatives. If they often carry out open market repurchase, they also increasingly rely on banks through complex buyback contracts involving option components, e.g. accelerated share repurchase contracts, VWAP-minus profit-sharing contracts, etc. The entanglement between the execution problem and the option hedging problem makes the management of these contracts a difficult task that should not boil down to simple Greek-based risk hedging, contrary to what happens with classical books of options. In this paper, we propose a machine learning method to optimally manage several types of buyback contract. In particular, we recover strategies similar to those obtained in the literature with partial differential equation and recombinant tree methods and show that our new method, which does not suffer from the curse of dimensionality, enables to address types of contract that could not be addressed with grid or tree methods.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr