Equilibrium Data Mining and Data Abundance.

Authors
Publication date
2020
Publication type
Other
Summary We analyze how computing power and data abundance affect speculators' search for predictors. In our model, speculators search for predictors through trials and optimally stop searching when they find a predictor with a signal-to-noise ratio larger than an endogenous threshold. Greater computing power raises this threshold, and therefore price informativeness, by reducing search costs. In contrast, data abundance can reduce this threshold because it intensifies competition among speculators and it increases the average number of trials to find a predictor. In the former (latter) case, price informativeness increases (decreases) with data abundance. We derive implications of these effects for the distribution of asset managers' skills and trading profits.
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr