Approximation rate in Wasserstein distance of probability measures on the real line by deterministic empirical measures.

Authors
Publication date
2020
Publication type
Other
Summary We are interested in the approximation in Wasserstein distance with index $\rho\ge 1$ of a probability measure $\mu$ on the real line with finite moment of order $\rho$ by the empirical measure of $N$ deterministic points. The minimal error converges to $0$ as $N\to+\infty$ and we try to characterize the order associated with this convergence. Apart when $\mu$ is a Dirac mass and the error vanishes, the order is not larger than $1$. We give a necessary condition and a sufficient condition for the order to be equal to this threshold $1$ in terms of the density of the absolutely continuous with respect to the Lebesgue measure part of $\mu$. We also check that for the order to lie in the interval $\left(1/\rho,1\right)$, the support of $\mu$ has to be a bounded interval, and that, when $\mu$ is compactly supported, the order is not smaller than $1/\rho$. Last, we give a necessary and sufficient condition in terms of the tails of $\mu$ for the order to be equal to some given value in the interval $\left(0,1/\rho\right)$.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr