Infinite-Dimensional Sums-of-Squares for Optimal Control.

Authors
Publication date
2021
Publication type
Other
Summary We introduce an approximation method to solve an optimal control problem via the Lagrange dual of its weak formulation. It is based on a sum-of-squares representation of the Hamiltonian, and extends a previous method from polynomial optimization to the generic case of smooth problems. Such a representation is infinite-dimensional and relies on a particular space of functions-a reproducing kernel Hilbert space-chosen to fit the structure of the control problem. After subsampling, it leads to a practical method that amounts to solving a semi-definite program. We illustrate our approach by a numerical application on a simple low-dimensional control problem.
Topics of the publication
  • ...
  • No themes identified
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr