Risk Measure Inference.

Authors
Publication date
2015
Publication type
Other
Summary We propose a bootstrap-based test of the null hypothesis of equality of two firms' conditional Risk Measures (RMs) at a single point in time. The test can be applied to a wide class of conditional risk measures issued from parametric or semi-parametric models. Our iterative testing procedure produces a grouped ranking of the RMs which has direct application for systemic risk analysis. A Monte Carlo simulation demonstrates that our test has good size and power properties. We propose an application to a sample of U.S. financial institutions using CoVaR, MES, and SRISK, and conclude that only SRISK can be estimated with enough precision to allow for meaningful ranking.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr