Stochastic control methods for optimal transportation and probabilistic numerical schemes for PDEs.

Authors Publication date
2011
Publication type
Thesis
Summary This thesis deals with the numerical methods for a fully nonlinear degenerate parabolic partial differential equations (PDEs), and for a controlled nonlinear PDEs problem which results from a mass transportation problem. The manuscript is divided into four parts. In a first part of the thesis, we are interested in the necessary and sufficient condition of the monotonicity of finite difference $\theta$-scheme for a one-dimensional diffusion equations. An explicit formula is given in case of the heat equation, which is weaker than the classical Courant-Friedrichs-Lewy (CFL) condition. In a second part, we consider a fully nonlinear degenerate parabolic PDE and propose a splitting scheme for its numerical resolution. The splitting scheme combines a probabilistic scheme and the semi-Lagrangian scheme, and in total, it can be viewed as a Monte-Carlo scheme for PDEs. We provide a convergence result as well as a rate of convergence. In the third part of the thesis, we study an optimal mass transportation problem. The mass is transported by the controlled drift-diffusion dynamics, and the associated cost depends on the trajectories, the drift as well as the diffusion coefficient of the dynamics. We prove a strong duality result for the transportation problem, thus extending the Kantorovich duality to our context. The dual formulation maximizes a value function on the space of all bounded continuous functions, and every value function corresponding to a bounded continuous function is the solution to a stochastic control problem. In the Markovian cases, we prove the dynamic programming principle of the optimal control problems, and we propose a gradient-projection algorithm for the numerical resolution of the dual problem, and provide a convergence result. Finally, in a fourth part, we continue to develop the dual approach of mass transportation problem with its applications in the computation of the model-independent no-arbitrage price bound of the variance option in a vanilla-liquid market. After a first analytic approximation, we propose a gradient-projection algorithm to approximate the bound as well as the corresponding static strategy in vanilla options.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr