Optimal control of deterministic and stochastic neuron models, in finite and infinite dimension. Application to the control of neuronal dynamics via Optogenetics.

Authors Publication date
2016
Publication type
Thesis
Summary The aim of this thesis is to propose different mathematical neuron models that take into account Optogenetics, and study their optimal control. We first define a controlled version of finite-dimensional, deterministic, conductance based neuron models. We study a minimal time problem for a single-input affine control system and we study its singular extremals. We implement a direct method to observe the optimal trajectories and controls. The optogenetic control appears as a new way to assess the capability of conductance-based models to reproduce the characteristics of the membrane potential dynamics experimentally observed. We then define an infinite-dimensional stochastic model to take into account the stochastic nature of the ion channel mechanisms and the action potential propagation along the axon. It is a controlled piecewise deterministic Markov process (PDMP), taking values in an Hilbert space. We define a large class of infinite-dimensional controlled PDMPs and we prove that these processes are strongly Markovian. We address a finite time optimal control problem. We study the Markov decision process (MDP) embedded in the PDMP. We show the equivalence of the two control problems. We give sufficient conditions for the existence of an optimal control for the MDP, and thus, for the initial PDMP as well. The theoretical framework is large enough to consider several modifications of the infinite-dimensional stochastic optogenetic model. Finally, we study the extension of the model to a reflexive Banach space, and then, on a particular case, to a nonreflexive Banach space.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr