Stochastic approximation and least-squares regression, with applications to machine learning.

Authors Publication date
2017
Publication type
Thesis
Summary Many problems in machine learning are naturally cast as the minimization of a smooth function defined on a Euclidean space. For supervised learning, this includes least-squares regression and logistic regression. While small problems are efficiently solved by classical optimization algorithms, large-scale problems are typically solved with first-order techniques based on gradient descent. In this manuscript, we consider the particular case of the quadratic loss. In the first part, we are interestedin its minimization when its gradients are only accessible through a stochastic oracle. In the second part, we consider two applications of the quadratic loss in machine learning: clustering and estimation with shape constraints. In the first main contribution, we provided a unified framework for optimizing non-strongly convex quadratic functions, which encompasses accelerated gradient descent and averaged gradient descent. This new framework suggests an alternative algorithm that exhibits the positive behavior of both averaging and acceleration. The second main contribution aims at obtaining the optimal prediction error rates for least-squares regression, both in terms of dependence on the noise of the problem and of forgetting the initial conditions. Our new algorithm rests upon averaged accelerated gradient descent. The third main contribution deals with minimization of composite objective functions composed of the expectation of quadratic functions and a convex function. Weextend earlier results on least-squares regression to any regularizer and any geometry represented by a Bregman divergence. As a fourth contribution, we consider the the discriminative clustering framework. We propose its first theoretical analysis, a novel sparse extension, a natural extension for the multi-label scenario and an efficient iterative algorithm with better running-time complexity than existing methods. The fifth main contribution deals with the seriation problem. We propose a statistical approach to this problem where the matrix is observed with noise and study the corresponding minimax rate of estimation. We also suggest a computationally efficient estimator whose performance is studied both theoretically and experimentally.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr