Asymptotic methods for option pricing in finance.

Authors Publication date
2018
Publication type
Thesis
Summary In this thesis, we study several financial mathematics problems related to the valuation of derivatives. Through different asymptotic approaches, we develop methods to compute accurate approximations of the price of certain types of options in cases where no explicit formula exists.In the first chapter, we focus on the valuation of options whose payoff depends on the trajectory of the underlying by Monte Carlo methods, when the underlying is modeled by an affine process with stochastic volatility. We prove a principle of large trajectory deviations in long time, which we use to compute, using Varadhan's lemma, an asymptotically optimal change of measure, allowing to significantly reduce the variance of the Monte-Carlo estimator of option prices.The second chapter considers the valuation by Monte-Carlo methods of options depending on multiple underlyings, such as basket options, in Wishart's stochastic volatility model, which generalizes the Heston model. Following the same approach as in the previous chapter, we prove that the process vérifie a principle of large deviations in long time, which we use to significantly reduce the variance of the Monte Carlo estimator of option prices, through an asymptotically optimal change of measure. In parallel, we use the principle of large deviations to characterize the long-time behavior of the Black-Scholes implied volatility of basket options.In the third chapter, we study the valuation of realized variance options, when the spot volatility is modeled by a constant volatility diffusion process. We use recent asymptotic results on the densities of hypo-elliptic diffusions to compute an expansion of the realized variance density, which we integrate to obtain the expansion of the option price, and then their Black-Scholes implied volatility.The final chapter is devoted to the valuation of interest rate derivatives in the Lévy model of the Libor market, which generalizes the classical Libor market model (log-normal) by adding jumps. By writing the former as a perturbation of the latter and using the Feynman-Kac representation, we explicitly compute the asymptotic expansion of the price of interest rate derivatives, in particular, caplets and swaptions.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr