Some aspects of the central role of financial market microstructure : Volatility dynamics, optimal trading and market design.

Authors Publication date
2020
Publication type
Thesis
Summary This thesis is organized in three parts. The first part examines the relationship between microscopic and macroscopic market dynamics by focusing on the properties of volatility. In the second part, we focus on the stochastic optimal control of point processes. Finally, in the third part, we study two market design problems. We start this thesis by studying the links between the no-arbitrage principle and the volatility irregularity. Using a scaling method, we show that we can effectively connect these two notions by analyzing the market impact of metaorders. More precisely, we model the market order flow using linear Hawkes processes. We then show that the no-arbitrage principle and the existence of a non-trivial market impact imply that volatility is rough and more precisely that it follows a rough Heston model. We then examine a class of microscopic models where the order flow is a quadratic Hawkes process. The objective is to extend the rough Heston model to continuous models allowing to reproduce the Zumbach effect. Finally, we use one of these models, the quadratic rough Heston model, for the joint calibration of the SPX and VIX volatility slicks. Motivated by the intensive use of point processes in the first part, we are interested in the stochastic control of point processes in the second part. Our objective is to provide theoretical results for applications in finance. We start by considering the case of Hawkes process control. We prove the existence of a solution and then propose a method to apply this control in practice. We then examine the scaling limits of stochastic control problems in the context of population dynamics models. More precisely, we consider a sequence of models of discrete population dynamics which converge to a model for a continuous population. For each model we consider a control problem. We prove that the sequence of optimal controls associated to the discrete models converges to the optimal control associated to the continuous model. This result is based on the continuity, with respect to different parameters, of the solution of a backward-looking schostatic differential equation.In the last part we consider two market design problems. First, we examine the question of the organization of a liquid derivatives market. Focusing on an options market, we propose a two-step method that can be easily applied in practice. The first step is to select the options that will be listed on the market. For this purpose, we use a quantization algorithm that allows us to select the options most in demand by investors. We then propose a pricing incentive method to encourage market makers to offer attractive prices. We formalize this problem as a principal-agent problem that we solve explicitly. Finally, we find the optimal duration of an auction for markets organized in sequential auctions, the case of zero duration corresponding to the case of a continuous double auction. We use a model where the market takers are in competition and we consider that the optimal duration is the one corresponding to the most efficient price discovery process. After proving the existence of a Nash equilibrium for the competition between market takers, we apply our results on market data. For most assets, the optimal duration is between 2 and 10 minutes.
Topics of the publication
Themes detected by scanR from retrieved publications. For more information, see https://scanr.enseignementsup-recherche.gouv.fr