Patrimony

On efficient methods for high-dimensional statistical estimation.

Conditional exponential family, Constant step-size SGD, Descente en mirroir, Estimation des paramètres, Famille exponentielle conditionnelle, Fenchel-Young loss, Fonction objectif du Fenchel-Young, Method of moments, Mirror descent, Méthode des moments, Parameter estimationily, SGD à pas constant

Stochastic approximation and least-squares regression, with applications to machine learning.

Acceleration, Accélération, Algorithme dual moyenné, Apprentissage de permutation, Approximation stochastique, Averaging, Contraintes de forme, Convex optimization, Convex relaxation, Descente miroire, Discriminative clustering, Dual averaging, Estimation minimax, Gradient stochastique, Least-squares regression, Minimax estimation, Mirror descent, Moyennage, Optimisation convexe, Parcimonie, Partionnement discriminatif, Permutation learning, Relaxation convexe, Régression par moindres carrés, Shape constraints, Sparsity, Statistical seriation, Stochastic approximation, Stochastic gradient, Sériation statistique

Stochastic approximation and least-squares regression, with applications to machine learning.

Acceleration, Algorithme dual moyenné, Apprentissage de permutation, Approximation stochastique, Averaging, Contraintes de forme, Convex optimization, Convex relaxation, Descente miroire, Discriminative clustering, Dual averaging, Estimation minimax, Gradient stochastique, Least-squares regression, Minimax estimation, Mirror descent, Moyennage, Optimisation convexe, Parcimonie, Partionnement discriminatif, Permutation learning, Relaxation convexe, Régression par moindres carrés, Shape constraints, Sparsity, Statistical seriation, Stochastic approximation, Stochastic gradient, Sériation statistique