RULLIERE Didier

< Back to ILB Patrimony
Topics of productions
Affiliations
  • 2020 - 2021
    Ecole nationale superieure des mines de saint etienne
  • 2020 - 2021
    Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes
  • 2020 - 2021
    Mines Saint-Étienne
  • 2012 - 2020
    Laboratoire de sciences actuarielle et financière
  • 2016 - 2017
    Méthodes d'analyse stochastiques des codes et traitements numériques
  • 2012 - 2016
    Université de Lyon - Communauté d'universités et d'établissements
  • 1999 - 2000
    Université Claude Bernard Lyon 1
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2011
  • 2000
  • Mixture Kriging on granular data.

    Marc GROSSOUVRE, Didier RULLIERE
    2021
    This paper deals with three related problems in a geostatistical context. First, some data are available for given areas of the space, rather than for some specic locations, which creates specic problems of multiscale areal data. Second, some uncertainties rely both on the input locations and on measured quantities at these locations, which creates specic uncertainty propagation problems. Third, multidimensional outputs can be observed, with sometimes missing data. These three problems are addressed simultaneously here by considering mixtures of multivariate random elds, and by adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we show that conditional mean, variance and covariances can be derived from this specic setting. A numerical illustration on simulated data is given.
Affiliations are detected from the signatures of publications identified in scanR. An author can therefore appear to be affiliated with several structures or supervisors according to these signatures. The dates displayed correspond only to the dates of the publications found. For more information, see https://scanr.enseignementsup-recherche.gouv.fr