MAUME DESCHAMPS Veronique

< Back to ILB Patrimony
Topics of productions
Affiliations
  • 2013 - 2021
    Institut camille jordan
  • 2012 - 2013
    Université de Lyon - Communauté d'universités et d'établissements
  • 2012 - 2013
    Université Claude Bernard Lyon 1
  • 2012 - 2013
    Laboratoire de sciences actuarielle et financière
  • 1997 - 1998
    Université de Bourgogne
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 1998
  • Estimation of multivariate generalized gamma convolutions through Laguerre expansions.

    Oskar LAVERNY, Esterina MASIELLO, Veronique MAUME DESCHAMPS, Didier RULLIERE
    2021
    The generalized gamma convolution class of distribution appeared in Thorin's work while looking for the infinite divisibility of the log-Normal and Pareto distributions. Although these distributions have been extensively studied in the univariate case, the multivariate case and the dependence structures that can arise from it have received little interest in the literature. Furthermore, only one projection procedure for the univariate case was recently constructed, and no estimation procedure are available. By expending the densities of multivariate generalized gamma convolutions into a tensorized Laguerre basis, we bridge the gap and provide performant estimations procedures for both the univariate and multivariate cases. We provide some insights about performance of these procedures, and a convergent series for the density of multivariate gamma convolutions, which is shown to be more stable than Moschopoulos's and Mathai's univariate series. We furthermore discuss some examples.
Affiliations are detected from the signatures of publications identified in scanR. An author can therefore appear to be affiliated with several structures or supervisors according to these signatures. The dates displayed correspond only to the dates of the publications found. For more information, see https://scanr.enseignementsup-recherche.gouv.fr