BALABDAOUI Fadoua

< Back to ILB Patrimony
Affiliations
  • 2013 - 2019
    University of Göttingen
  • 2016 - 2017
    Swiss Federal Institute of Technology in Zurich
  • 2016 - 2017
    Université Paris-Dauphine
  • 2016 - 2017
    Communauté d'universités et établissements Université de Recherche Paris Sciences et Lettres
  • 2021
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • Behaviour of the monotone single index model under repeated measurements.

    Cecile DUROT, Fadoua BALABDAOUI, Hanna JANKOWSKI
    2021
    The generalized linear model is an important method in the statistical toolkit. The isotonic single index model can be thought of as a further generalization whereby the link function is assumed to be monotone non-decreasing as opposed to known and fixed. Such a shape constraint is quite natural in many statistical problems, and is fulfilled by the usual generalized linear models. In this paper we consider inference in this model in the setting where repeated measurements of predictor values and associated responses are observed. This setting is encountered in medical studies and is very different from the one considered in the classical monotone single index model studied in the literature. Here, we use nonparametric maximum likelihood estimation to infer the unknown regression vector and link function. We present a detailed study of finite and asymptotic properties of this estimator and propose goodness-of-fit tests for the model. Through an extended simulation study, we show that the model has competitive predictive performance. We illustrate our estimation approach using a Leukemia data set.
Affiliations are detected from the signatures of publications identified in scanR. An author can therefore appear to be affiliated with several structures or supervisors according to these signatures. The dates displayed correspond only to the dates of the publications found. For more information, see https://scanr.enseignementsup-recherche.gouv.fr