BENEZET Cyril

< Back to ILB Patrimony
Affiliations
  • 2018 - 2019
    Université de Paris Cité
  • 2018 - 2019
    Laboratoire de Probabilités, Statistique et Modélisation
  • 2018 - 2019
    Sciences mathematiques de paris centre
  • 2018 - 2019
    Université de Paris
  • 2021
  • 2019
  • Transform MCMC schemes for sampling intractable factor copula models.

    Cyril BENEZET, Emmanuel GOBET, Rodrigo TARGINO
    2021
    In financial risk management, modelling dependency within a random vector X is crucial, a standard approach is the use of a copula model. Say the copula model can be sampled through realizations of Y having copula function C: had the marginals of Y been known, sampling X^(i) , the i-th component of X, would directly follow by composing Y^(i) with its cumulative distribution function (c.d.f.) and the inverse c.d.f. of X^(i). In this work, the marginals of Y are not explicit, as in a factor copula model. We design an algorithm which samples X through an empirical approximation of the c.d.f. of the Y marginals. To be able to handle complex distributions for Y or rare-event computations, we allow Markov Chain Monte Carlo (MCMC) samplers. We establish convergence results whose rates depend on the tails of X, Y and the Lyapunov function of the MCMC sampler. We present numerical experiments confirming the convergence rates and also revisit a real data analysis from financial risk management.
  • Study of numerical methods for partial hedging and switching problems with costs uncertainty.

    Cyril BENEZET, Jean francois CHASSAGNEUX, Agnes SULEM, Jean francois CHASSAGNEUX, Agnes SULEM, Romuald ELIE, Idris KHARROUBI, Emmanuel GOBET, Huyen PHAM, Adrien RICHOU, Romuald ELIE
    2019
    In this thesis, we make some contributions to the theoretical and numerical study of some stochastic control problems, as well as their applications to financial mathematics and financial risk management. These applications concern problems of valuation and weak hedging of financial products, as well as regulatory issues. We propose numerical methods to efficiently compute these quantities for which no explicit formula exists. Finally, we study backward stochastic differential equations related to new switching problems with cost uncertainty.
Affiliations are detected from the signatures of publications identified in scanR. An author can therefore appear to be affiliated with several structures or supervisors according to these signatures. The dates displayed correspond only to the dates of the publications found. For more information, see https://scanr.enseignementsup-recherche.gouv.fr