Machine Learning et nouvelles sources de données pour le scoring de crédit.

Auteurs Date de publication
2019
Type de publication
Autre
Résumé Dans cet article, nous proposons une réflexion sur l’apport des techniques d’apprentissage automatique (Machine Learning) et des nouvelles sources de données (New Data) pour la modélisation du risque de crédit. Le scoring de crédit fut historiquement l’un des premiers champs d’application des techniques de Machine Learning. Aujourd’hui, ces techniques permettent d’exploiter de « nouvelles » données rendues disponibles par la digitalisation de la relation clientèle et les réseaux sociaux. La conjonction de l’émergence de nouvelles méthodologies et de nouvelles données a ainsi modifié de façon structurelle l’industrie du crédit et favorisé l’émergence de nouveaux acteurs. Premièrement, nous analysons l’apport des algorithmes de Machine Learning à ensemble d’information constant. Nous montrons qu’il existe des gains de productivité liés à ces nouvelles approches mais que les gains de prévision du risque de crédit restent en revanche modestes. Deuxièmement, nous évaluons l’apport de cette « datadiversité », que ces nouvelles données soient exploitées ou non par des techniques de Machine Learning. Il s’avère que certaines de ces données permettent de révéler des signaux faibles qui améliorent sensiblement la qualité de l’évaluation de la solvabilité des emprunteurs. Au niveau microéconomique, ces nouvelles approches favorisent l’inclusion financière et l’accès au crédit des emprunteurs les plus fragiles. Cependant, le Machine Learning appliqué à ces données peut aussi conduire à des biais et à des phénomènes de discrimination.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr