Contribution à l'analyse statistique des données fontionnelles.

Auteurs
  • SAUMARD Mathieu
  • PATILEA Valentin
  • SARDAT Pascal
  • LEDOUX James
  • CARDOT Herve
  • MAS Andre
Date de publication
2013
Type de publication
Thèse
Résumé Dans cette thèse, nous nous intéressons aux données fonctionnelles. La généralisation du modèle linéaire généralisé fonctionnel au modèle défini par des équations estimantes est étudiée. Nous obtenons un théorème du type théorème de la limite centrale pour l'estimateur considéré. Les instruments optimaux sont estimés, et nous obtenons une convergence uniforme des estimateurs. Nous nous intéressons ensuite à différents tests en données fonctionnelles. Il s'agit de tests non-paramétriques pour étudier l'effet d'une covariable aléatoire fonctionnelle sur un terme d'erreur, qui peut être directement observé comme une réponse ou estimé à partir d'un modèle fonctionnel comme le modèle linéaire fonctionnel. Nous avons prouvé, pour pouvoir mettre en oeuvre les différents tests, un résultat de réduction de la dimension qui s'appuie sur des projections de la covariable fonctionnelle. Nous construisons des tests de non-effet et d'adéquation en utilisant soit un lissage par un noyau, soit un lissage par les plus proches voisins. Un test d'adéquation dans le modèle linéaire fonctionnel est proposé. Tous ces tests sont étudiés d'un point de vue théorique et pratique.
Thématiques de la publication
Thématiques détectées par scanR à partir des publications retrouvées. Pour plus d’informations, voir https://scanr.enseignementsup-recherche.gouv.fr